The cover design is a reproduction of the official programme cover for all ceremonies of the University. The motif of the gold border is the University emblem—the mythical Chinese Bird of the South, "feng", symbol of nobility, beauty, loyalty, majesty and many other virtues.
ORDER OF CEREMONIAL

The Congregation will stand while the procession is entering and leaving the Hall

1. The Chancellor will declare the Congregation open.

2. The Vice-Chancellor will present to the Chancellor the following candidates for the degree of Doctor of Laws honoris causa:

 Sidney Samuel GORDON
 LEE Tsung-Dao
 LI Choh-Hao
 PEI Ieoh-Ming

 Public Orator: Prof. Shou-Sheng HSUEH

3. Prof. LEE Tsung-Dao will address the Congregation.

4. Candidates for the degree of Master of Arts will be presented to the Chancellor for the conferment of the degree.

5. Candidates for the degree of Master of Commerce will be presented to the Chancellor for the conferment of the degree.

6. Candidates for the degree of Bachelor of Arts will be presented to the Chancellor for the conferment of the degree.

7. Candidates for the degree of Bachelor of Science will be presented to the Chancellor for the conferment of the degree.

8. Candidates for the degree of Bachelor of Commerce will be presented to the Chancellor for the conferment of the degree.

9. Candidates for the degree of Bachelor of Social Science will be presented to the Chancellor for the conferment of the degree.

10. The Vice-Chancellor will address the Congregation.

11. The Chancellor will declare the Congregation closed.

Music provided by the Band of the Royal Hong Kong Police Force
by kind permission of the Commissioner of Police

— 5 —
The squire from Scotland who is being honoured on this occasion is a prominent member of his profession, a leading citizen of the community, and a dedicated supporter of higher education in Hong Kong.

The Hon. S. S. Gordon was educated in Glasgow in the field of accountancy. After becoming a fully qualified Chartered Accountant, he joined the well-known firm of Lowe, Bingham & Matthews in 1947. He became a partner of the same firm in 1950 and a senior partner in 1956. He is a member of the Institute of Chartered Accountants of Scotland.

Gifted with exceptional business acumen, dynamic personality and unusual competence, he has played an important role in the local business community for many years. Mr. Gordon has served as chairman of the Hong Kong General Chamber of Commerce and as a member of the Cotton Advisory Board, Finance Committee of the Federation of Hong Kong Industries, and Advisory Board of the Hong Kong Export Credit Insurance Corporation. He is chairman of the Hong Kong Building and Loan Agency Ltd., and director of the Hongkong & Shanghai Hotels, Ltd., Lane Crawford Ltd., and the Hong Kong Land Investment & Agency Co. Ltd.

In addition to his professional successes, Mr. Gordon has been actively involved in numerous community services. His deep sense of dedication and his demonstrated effectiveness in public affairs quickly earned him recognition as one of Hong Kong's foremost citizens. He was appointed an Unofficial Justice of the Peace in 1961, ably served on the Legislative Council between 1962 and 1966 and since that time has been a member of the Executive Council. His selfless services to Hong Kong have twice been recognised by Her Majesty the Queen: first by appointment in 1965 as an Officer of the Most Excellent Order of the British Empire and three years later as a Commander of the British Empire.

In the midst of his myriad activities, Mr. Gordon still finds time and energy to serve Hong Kong's institutions of higher education. In addition to his membership in the Court of the University of Hong Kong, he has rendered invaluable services to The Chinese University of Hong Kong as a member of the University's Council and its Finance Committee and as Chairman of the Terms of Service Committee. He has also rendered invaluable assistance as Chairman of the Advisory Board of the Lingnan Institute of Business Administration.

In recognition of his outstanding services to his profession, his dedicated efforts to improve the public welfare and his many significant contributions in the interests of higher education, this University gratefully nominates Sidney Samuel Gordon to Your Excellency for conferment of the degree of Doctor of Laws honoris causa.
Tsung-Dao Lee, Ph.D.

The eminent scholar who is being presented for conferment of an honorary degree is not only a man of the world but of the universe. In collaboration with his close associate, Dr. Chen-Ning Yang, Dr. Lee successfully challenged the long-accepted law of conservation of parity, thus making an historic contribution to the knowledge of the universe and opening up new frontiers of science. In recognition of his genius, he was awarded, as a co-recipient, the Nobel Prize in Physics in 1957, at the age of 31.

Professor Lee was born in Shanghai, China and received his higher education at the National Chekiang University in Kweichow from 1943 to 1944 and at the National Southwest Associated University in Kunming from 1945 to 1946. He then pursued advanced studies in physics at the University of Chicago and was awarded the degree of Ph.D. in 1950.

Dr. Lee has a distinguished academic career. After graduation from the University of Chicago, he was immediately appointed a research associate in astronomy by his university. He later joined the University of California as research associate and lecturer in physics, and subsequently became a member of the prestigious Institute for Advanced Study at Princeton. He was appointed by Columbia University to be assistant professor of physics in 1953, associate professor in 1955 and full professor in 1956. He has remained at Columbia except from 1960 to 1963, when he was a professor at the Institute for Advanced Study at Princeton. He had the unusual honour of being the Loeb Lecturer at Harvard University in 1957 and again in 1964. He is a member of the American National Academy of Science and recipient of the Albert Einstein Award in Science at Yeshiva University in 1957.

Dr. Lee is a close friend and adviser to The Chinese University of Hong Kong. He has served on its Advisory Board on Natural Sciences since 1964, and has been generous in giving advice and guidance in the development of our academic programme in physics. This University owes him a debt of gratitude, and as a token of appreciation for his invaluable services, is commending him to Your Excellency for the conferment of the degree of Doctor of Laws honoris causa.
CHOH-HAOLI, PH.D.

Dr. Li is a prominent chemist and experimental endocrinologist. He has spent thirty years conducting research on hormones, and is esteemed as the world's foremost authority on the subject.

Born of a distinguished family in Canton, Dr. Li first intended to study mathematics. Because of his liking for a certain professor, he changed his major field to chemistry. He earned the degree of Bachelor of Science from the University of Nanking in 1933, and was invited to teach chemistry at his alma mater after graduation. In 1935, he entered the University of California, Berkeley, and became its first graduate student from China to pursue advanced studies in chemistry. Three years later, he was awarded the degree of Doctor of Philosophy with flying colours. He also received an honorary degree of Doctor of Medicine from the Catholic University of Chile in 1962.

Dr. Li has a rich teaching and research experience. He has been research associate and assistant professor of experimental biology, associate professor and then professor of biochemistry and professor of experimental endocrinology since 1950. He has been both Founder and Director of the famous Hormone Research Laboratory, Berkeley and San Francisco, for the past two decades.

Numerous honours have been conferred on Dr. Li in recognition of his scientific achievements and contributions to mankind. He received the Ciba Award in Endocrinology in 1947, Guggenheim Fellowship in 1948, Francis Emory Septennial Prize of the American Academy of Arts and Sciences in 1955, Albert Lasker Award for Basic Medical Research in 1962, Golden Plate Award of the American Academy of Achievement in 1964, and Scientific Achievement Award of the American Medical Association in 1970. He was also honoured by appointment as a Faculty Research Lecturer at the University of California, San Francisco, from 1962 to 1963 and as Annual Lecturer of the Japanese Endocrine Society in 1965.

Dr. Li has been elected to several prominent academic and professional institutions in the U.S.A. and other parts of the world, including fellowships in the American Academy of Arts and Sciences, the American Association for the Advancement of Science, and the Academy of Science. He has also been conferred honorary membership by the Argentina Society of Endocrinological Metabolism, Biology Society of Chile, and Academia Sinica of China.

Dr. Li has been an active member of the Advisory Board on Natural Sciences of The Chinese University of Hong Kong since 1964. In that capacity, he has greatly contributed to the development of our academic programme in chemistry. He is also the generous donor of the C. H. Li Funds for Research in Chemistry at this University. In deep appreciation of his services and contribution to our University, Choh-Hao Li is being presented to Your Excellency as a candidate for the degree of Doctor of Laws honoris causa.
Mr. Pei is a world-renowned architect with a reputation spanning numerous major building projects in the United States, including the new East Building of the National Gallery of Art, Washington, D.C.; the John Fitzgerald Kennedy Library in Cambridge, Massachusetts; the East-West Center in Honolulu; the University Plaza at New York University; the National Center for Atmospheric Research in Colorado; and the National Airlines Terminal at the John F. Kennedy International Airport in New York City, just to mention a few.

After his early education in China and Hong Kong, Mr. Pei attended universities in the United States. He obtained the degree of Bachelor of Architecture from the Massachusetts Institute of Technology in 1939 and the degree of Master of Architecture from Harvard University in 1946. He practised his profession in Boston and New York and taught at the Harvard Graduate School of Design from 1945 to 1948. He then served as Director of the Architectural Division of the well-known American firm, Webb & Knapp, Inc. until 1955, when he founded I.M. Pei & Partners in New York City, an internationally renowned architectural firm to this day.

Mr. Pei has not only been involved in creating new buildings, but has also been actively engaged on several major urban redevelopment plans in the United States, especially in the downtown areas of Boston, Los Angeles, Oklahoma City, Cleveland and Philadelphia.

Mr. Pei has been honoured by leading American academic and professional bodies, and served on the National Council of Humanities, by Presidential appointment, from 1966 to 1970. He is a member of the National Institute of Arts and Letters, the National Academy of Design, and the Urban Design Council of the City of New York. He is a Fellow of the American Institute of Architects and of the American Academy of Arts and Sciences. A past member of several visiting committees of M.I.T. and Harvard, he is currently serving on the Visual and Performing Arts Visiting Committee of the Board of Overseers of Harvard College.

He received the Alpha Rho Psi Medal of the Massachusetts Institute of Technology, the Arnold Brunner Award of the National Institute of Arts and Letters, and the Medal of Honour of the New York Chapter of the American Institute of Architects. In May of 1970 the University of Pennsylvania conferred the honorary degree of Doctor of Fine Arts on him.

Mr. Pei has given valuable professional advice to The Chinese University of Hong Kong on the planning and development of its new campus site. He visited the campus in November 1966, and has kept in close touch with the physical development of this University since then. In recognition of his outstanding professional contributions and services to our University, Ieoh-Ming Pei is being warmly commended to Your Excellency as a worthy candidate for the degree of Doctor of Laws honoris causa.
It is a deep honour and a great pleasure for all of us to be here to receive our honorary degrees. For me, this is an especially gratifying experience. The Chinese University of Hong Kong, though established not too long ago, is already an internationally renowned institution that represents the unification of two cultures: East and West. In this respect, the spirit of this University also mirrors my own academic experiences. While my research has been done almost entirely in the United States, most of my education was received in China. These early periods in China have been particularly influential in shaping my later thinking towards science.

As you all know, historically there are some basic differences in the attitude towards nature between these two cultures. In the West, at least in the past, one adopts more the mechanistic viewpoint, and the emphasis has been more on how to analyse and to conquer nature, while in the East, one takes more the philosophical attitude, and concerns more on how to understand and to be in harmony with nature. These two attitudes, though different, are actually complements of each other; they can be joined together to form a single unified view, which, as we shall see, is rather similar to the viewpoint adopted in modern physics.

The present form of physics has its origin in the Renaissance period of the West. We call the physics developed during the period from Renaissance to the early twentieth century, "classical physics". Classical physics has its foundation in Newtonian mechanics; it completely adopts a mechanistic point of view. It regards the future as totally determined from the present. To illustrate this view, we may consider the throwing of a ball. According to Newtonian mechanics, in order to predict the path of the ball, all we need is to determine the position and the velocity of the ball at the beginning. The more accurate is the initial determination, the more accurate will be the final prediction, and there is no theoretical limitation to such an accuracy.

Therefore, in classical physics, if we can fully control the initial condition of any object, then we can fully determine its future. This is, then, a purely mechanistic point of view. One can, of course, apply classical physics to the whole Universe. We ourselves collectively form only a rather small object in the Universe. According to the same view, our future is then also already completely determined by our present configuration, which in turn is completely determined from our past. This mechanistic view, therefore, leads to the so-called "determinism".

However, since the beginning of this century there have been enormous strides made in physics. From our studies that range from molecules, atoms, nuclei, fundamental particles to astrophysics, we realize that the classical physics is only an approximation. The mechanistic view is not accordance with nature, and Newtonian mechanics must be replaced by quantum mechanics. In this connection, I wish to briefly discuss one of the fundamental principles in quantum mechanics. It is called the uncertainty principle.
The uncertainty principle states that there is a limitation in our abilities to determine things. If at any time, we can accurately determine the position of any subject, then at the same time, because of the position determination, the momentum of that object necessarily becomes indeterminate. For usual objects, if the momentum is indeterminate, then its velocity is indeterminate, and if its velocity is indeterminate, then it would be impossible to predict its future course. Similarly, if at any time we can accurately determine the momentum of any object, then according to the “uncertainty principle”, at the same time its position must become uncertain, and therefore it is also not possible to predict its future.

The “uncertainty principle” points out that in any determination of the configurations of any object, it is necessary to interact with that object. This interaction necessarily produces a disturbance on the object which produces the uncertainty. No matter how careful one performs the experiment, there must be a minimum amount of uncertainties; this minimum amount can be accurately predicted by quantum mechanics. This prediction has been verified to be correct through numerous experiments. This minimum amount of uncertainty is neither dependent of the object that is being measured, nor of the person who is doing the experiment. Therefore, the “uncertainty principle” is regarded as a universal principle, applicable to all phenomena in nature. Through quantum mechanics, we can accurately predict only the probability of any event. Thus, we can never control everything. Similarly, our future is also not completely determined by our past.

From a philosophical point of view, there are some similarities between this particular concept of modern physics and the Chinese concept of “Tai Chi” and “Ying Yang”. For this reason, Professor Niels Bohr of Denmark, the founder of quantum theory, chose the Chinese “Tai Chi” symbol for his coat of arms. While Professor Bohr left us a few years ago, his shield and his “Tai Chi” emblem remain in the old Friederich Castle in Denmark, symbolizing the unification of two cultures, which coincides with the spirit of The Chinese University of Hong Kong.

I am, indeed, fortunate to have this opportunity to talk to you. I am particularly delighted to see the large number of talents cultivated by The Chinese University, and everyone is looking forward to see the generations and generations of scholars that will come out of this great University to light up a new torch in the civilization of the world.
The Honorary Graduates with H.E. the Chancellor and the Vice-Chancellor

From left to right: Dr. Pei Ieoh-Ming, Dr. the Hon. S. S. Gordon, Vice-Chancellor Choh-Ming Li, H.E. the Chancellor Sir David Trench, Dr. Lee Tsung-Dao, and Dr. Li Choh-Hao
Dr. Lee Tsung-Dao addressing the Congregation

Dr. Pei Ieoh-Ming speaking at the Graduation Dinner
THE "CAPPING"

Dr. the Hon. S. S. Gordon

Dr. Lee Tsung-Dao
可是，從二十世紀初葉到現在，物理學的改變進展很大。我們從原子、核子、基本粒子、天體物理等各方面的實験和理論的研究結果，知道這種純機械化的看法是不對的。「古典物理」祇是一種近似真理而非真理的學說，「牛頓力學」是應該被「量子力學」來代替的。在「量子力學」中有一條很基本，很重要的定理叫做「測不準定理」。這條定理說，我們永遠不能測準一切。任何物件假使我們能完全測定它在任何一時間的位置，那末，在同一時間，它的動量就無法能固定。對普通一般物件而論，動量不固定，就是速度不固定，那也就無法完全預定這物件將來的路線了。同樣的，假使在某一時間，我們能完全測定它的動量，那末，在同一時間，其位置就無法預定。因此，這測不準的量度是可以用「或然率」來表示的。從量子力學，我們可以很精密的計算這「或然率」。我們雖然能預定每個現象發生的可能性，可是我們永遠不能控制一切，使成為必然性。同樣地，我們的將來也不因我們的過去而被完全決定。從哲學上講，測不準定理和老子所說：「道可道，非常道。名可名，非常名。」的意思頗有符合之處。所以，從現代物理學上有些看法，與中國太極和陰陽二元的學說也有相似的地方。因此，本書的作者傾向於用中國雙方學來觀照現代學術。
李政道博士講詞

今天我們能來香港中文大學，接受榮譽博士學位，我們都覺得十分光榮。而對我個人，這更是一件特別值得高興的事情。雖然過去二十多年來，我工作的地方，大部分是在美國，可是以前小學、中學、大學的教育都是在中國受的。這些早期的訓練，對我後來做科學工作影響很大。而香港中文大學雖然成立不久，已經是世界上有名的學府。它們的目的正是要融貫中西的文化，所以，今天能在此地參加這典禮，更使我覺得有價值。

各位都知道，在自然科學的歷史上，中西文化對自然界的看法和目標，是有某些分別的。西方至少在過去，比較注重機械化的看法，着重在分析和征服自然，而東方則比較哲學化，着重在對自然的了解和調和。這兩種觀點雖然不同，其實是可以互相補助的，而這並用中西觀念的一點，也正和近代物理的看法相符合。

我們稱物理學，從西方文藝復興一直到二十世紀初葉的一個階段，為「古典物理學」。這是英國牛頓所創作的力學為基礎，出發於純機械化的觀點，認為一切現象的將來都能由目前或過去的情況決定的。舉一個簡單的例子，比方說，擲一個皮球，假使在開始擲的時候，我們能完全確定它的位置和速度大小和方向，那末我們就能完全決定這皮球被擲以後的路線。從「古典物理學」的立場來說，小而言之，任何一件東西，任何一個現象，祗要在開始的時候，我們能夠完全控制它的一切，那末它將來的發展，也就全部被支配了。所以，這是純機械化的看法。大而言之，我們可以拿「古典物理學」推廣應用在整個宇宙。那末，我們自己，從個人到整個人類，不過是宇宙間一件很渺小的東西，因 此，我們的將來也已經被我們的過去完全決定了。所以，從「古典物理學」這樣純機械化的看法，就會引導到一定命
貝聿銘先生

貝聿銘先生為負有國際聲譽之建築家，目前美國重要之建築物，如華盛頓美國藝術館新建之東樓、麻省甘迺迪圖書館、火奴魯魯東西文化中心、紐約大學廣場、柯羅拉多美國氣象研究中心、紐約城甘迺迪機場大廈等均有先生參與之設計。

當一九四五至四八年間，貝先生曾執教於哈佛大學設計研究院，其後轉入美國

一九五五年並自設貝氏建築公司於紐約，極享盛名。同時，貝先生亦應邀參與擬訂美國若干城市之「重建計劃」，如波士頓、洛杉磯、俄克拉荷馬、克利夫蘭及費城等地之「重建」。貝先生亦為重要計劃人之一。

一九六六至七零年間，貝先生更為美國人文學會會員，此外，貝先生現為哈佛大學建築學會委員。　文科學院、設計學院、建築學會以及紐約市區設計會等學術團體之委員或會員。　因貝先生在建築界特殊之成就及貢獻，所獲榮譽極多，重要者包括美國藝術文學院獎、建築學會特別獎、哈佛大學之諮詢委員會委員等。　因貝先生對本大學之校址設計，提供珍貴意見甚多，並於一九六六年專程訪問本校；此後在工程進行中，先生亦深表關切。　為誌揚貝先生在建築界特殊之成就，以及對本校之協助，特請監督閣下頒予榮譽法學博士學位。
李卓皓博士

李卓皓博士為近代學術界一致推崇之化學家，亦為「荷爾蒙」研究之權威，渠從事此項專門研究，已達三十年之久。

李博士原籍廣東，系出世家。初本攻數學，後受其教授之影響，改習化學，於一九三三年獲金陵大學學士學位，因成績優異而受聘母校；一九三五年赴美，入加利福尼亞大學研究院，為中國人就讀該院化學學科之第一人，後並創辦加利福尼亞荷爾蒙實驗研究所，兼任所長迄今凡二十年。李博士之科學研究對人類貢獻至鉅，深受國際上之重視，因此所獲之榮譽亦多，計有：

一九四七年「西巴內分泌研究獎」；
一九四八年「郭根翰研究獎」；
一九五五年美國人文科學學院榮譽獎；
一九六二年「阿爾拔特·拉斯克研究獎」；
一九六四年全美學術優秀人才學會金牌獎；
一九七零年美國醫學會研究獎。一九六二年李博士獲智利天主敎大學榮譽醫學博士學位，同年，應加利福尼亞大學之請赴日本，作內分泌學之榮譽性講演。此外，李博士並受聘為若干國際著名學術團體之會員、委員或院士，諸如阿根廷內分泌學會、智利生物學會、美國科學發展學會、阿根廷內分泌學會、智利生物學會及中國中央研究院等。

李博士為本校之自然科學顧問委員會委員，並以款捐贈本校，成立李氏化學研究基金，促進本校科學之發展。
李政道博士

李政道博士为世界杰出之物理学家，曾与另一位物理学家杨振宁博士共同否定「宇称守恒定律」，增进了人类对宇宙之了解，为科学开闢新境界，因而获诺贝尔物理学奖金。其时，李博士年仅三十一岁，诚为科学界之天才。

李博士出生上海，曾就读于浙江大学及西南联大，后入美国芝加哥大学研究院，一九五零年得博士学位，随即芝大聘为天文学研究员，后任加州大学物理研究室与讲师，及普林斯顿高等研究院研究员，一九五三年受哥伦比亚大学之聘，为助理教授，五年后，任哥大教授，迄於今。

一九五七年，李博士获耶西华（Yeshiva）大学之爱因斯坦科学奖金；五七及六四年，又度应哈佛大学之请，作荣誉性之讲学，并被美国科学院之聘，出任院士。

自一九六四年起，李博士即受本校之聘请，担任自然科学顾问委员会委员，给予本校物理学发展之协助甚大。

监督阁下颁予荣誉法学博士学位。
高登先生原籍蘇格蘭，早年受敎育於格拉斯哥，專攻會計學，一九四七年取得會計師資格，加入蘇格蘭會計學會為會員，嗣進羅兵咸（Lowe, Bingham & Matthews）會計師行工作，一九五零年成爲該行之股東。由於高登先生具有特殊之資歷與才能，深受社會各方面推董，常畀予要職。先後担任香港總商會會長、紡織業諮詢委員會委員、香港工業總會財政委員、香港出口保險信託局顧問、香港建屋貸疑有限公司董事會主席、香港上海大酒店有限公司董事、連卡佛有限公司董事等載。一九六一年至六六年期間，高登先生曾任香港立法局議員，一九六六年開始又任行政局議員，以迄於今。鑒於高登先生對香港之貢獻，英女皇特於一九六五年授予O. B. E 勳銜，一九六八年再授予C. B. E 勳銜。高登先生對推進本港高等敎育亦具熱忱，現任本大學校董、敎職員服務條例委員會主席、以及嶺南商科研究所諮詢委員會主席等職。為讚揚高登先生對社會及本大學之貢獻，恭請監督閣下頒予榮譽法學博士學位。
香 港 中 文 大 學 頒 授 榮 譽 學 位 及 各 科 學 位 典 禮 秩 序

來賓請於典 禮行列進出會場 時起立

(一) 監 督 宣 佈 典 禮 啟 動

(二) 校 長 請 監 督 頒 授 榮 譽 法 學 博 士 學 位 與 下 列 人 士:

高 聡
李 政 道 李 卓 皓 貝 聿 銘

宣 謝 講 詞:
薛 寿 生 教 授

(三) 李 政 道 教 授 致 講

(四) 頒 授 文 學 碩 士 學 位

(五) 頒 授 商 學 碩 士 學 位

(六) 頒 授 文 學 士 學 位

(七) 頒 授 理 學 士 學 位

(八) 頒 授 商 學 士 學 位

(九) 頒 授 社 會 科 學 士 學 位

(十) 校 長 致 講

(十一) 監 督 宣 佈 典 禮 成

本 校 荷 蒙 警 務 处 長 遣 派 皇 家 香 港 警 察 樂 團 到 場 奏 樂 特 此 致 謝
圖此於見赤鳳，敬校為「鳳」以學大本。同相案圖面封表序秩禮典屬學大本與，案圖刊所面封刊特此。德美種皆他及鑄莊、恱忠、麗美、貴高為者敬象所其，「鳥之方南」之稱所籍典國中為鳳。中案
刊校學大文中刊 特月 一 十年零七九一

閱卷成端如文必應備

隨卷文必應備